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state problems, provided that relevant conditions are met. Individual derivatives are the 
only ones that are important and all arguments concerning the method of separation of 
the derivatives in the Enskog’s method should be taken as referring to the individual de- 
rivatives. This is obvious from the physical point of view, since the Enskog method leads 
to the hydrodynamic representation of the motion of gas. 

Of course,instead of confining ourselves to the first Enskog approximation for 1, we could 

attempt to obtain a more accurate asymptotic representation by taking into account the 
second derivatives of f+ in the Taylor expansion. This would have yielded the Burnett 
approximation (it would not take us into the higher rarefaction region, since the effective 
domain of the functional dependence would not be altered). The question whether this 

method would yield better accuracy in the general case is open to doubt, since this would 
demand the smoothness of I+ and consequently of f beyond that given by the Boltzmann 

equation. 
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We consider the application of the least squares method to models which are nonlinear 
with respect to the parameters and for which a linearizing transformation Y exists (such 

problems e. g. arise in the experimental determination of the parameters of the exponen- 
tial criteria1 equations). We prove that the values of the parameters obtained after the 
transformation deviate from the required values, and we show the logarithmic transforma- 

tion as an example illustrating the method used to obtain formulas yielding the estimates 
of these errors. 

Iteration method which we propose, retains the advantages of the computations based 
on the linear model, but removes the error mentioned above, and we give the sufficient 
conditions for its convergence. To illustrate the method, we use empirical data on the 
mass transfer at the wall in a turbulent fluid flow at large Schmidt numbers. 

Let us consider a random variable function of the form y (x) = f (x) + E (x) (without 
loss of generality, we can assume that this function is defined for a<x < b and is equal 
to zero outside this interval), where f (x) = <Y (Y)) and E (n) is a stationary random func- 
tion such, that <$ (s)) = 0. Usually, the problem of estimating the regression curve f (x) 
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on the obtained realization y (s), a < x < b can be solved using the least squares me- 
thod, i. e. minimizing the functional b 

c . IY (4 -cp(x, Wl’dx w 

where cp (s, 0) denotes a certain class OF functions approximating the regression linef (x) 
and 0 is a set of unknown parameters fully defining the function ‘p (x, 0). As a rule, we 

also assume that q (x, 0) is a linear function of its parameters, i. e. 0(x, 0) = O~YI (x) $- 

+ . . . -/- 0,~ (x). In this case the problem of minimizing the functional (1) reduces to 

solving a simple linear system of equations (see e.g. Cl]). 
In practice we often encounter a situation in which the form of the function f(s) = 

= f (x, tr) is well known, but the parameters 0 which are being estimated, appear in it 
nonlinearly (this, for example, happens in approximating the experimental data obtained 
in the process of heat, mass or momentum transfer, using the criteria1 equations of the type 

f (x, B) = kr, 11 . . . +‘, 8 = (k, I,, . . ., I,). In these cases, there exists a transformation 
Y’ (f) linearizing the model which is nonlinear in 8, i.e. such transformation, that 

Y’[f(x, @)I = 01 I,(4 + . . . + %lfnW (3 

This means that the problem of estimation of the parameters 8i reduces to the standard 
problem of the least squares method. Let us denote the value of 9 estimated by this me- 

thod by 6(*) , and by 8 (?) the estimate based on the requirement of minimization of the 

functional (1) in which cp (x, 0) is replaced with f (x, 0). 

We note that either estimate could be considered optimal. In the latter case, the “qua- 
lity” of the estimate is judged by the value of the integral (l), and in the former case - 
by some other metric, It must however be borne in mind that use of an arbitrary criterion 

causes the resulting method to deviate from the classical least squares method in the 
sense of [l] and, as we shall show later, hinders the process of comparing the parameters 

tJC*) computed over various intervals (a, b), since 04” is found to be strongly dependent 
on the..interval of measurement. For this reason we shall, in the following, adopt Oit) as 
the “best”, or even the “correct” estimate. 

It can easily be proved that if Y.is not an identity transformation, then O’*j # @(I). 
Indeed, let us assume that Y (Y) has a one-sided Laplace transform, i. e. 

ri$J 

Y(Y)& \ @(P)epYQ 

Then r5aa 
r-i+= r-t-i- 

(Y(Y)> =:& \ O(P) 
ePf”) <,-PI-ml> dp = & \; a (p) .I 04 .P”r) dp 

y-b0 r-lie0 

where <~-pl-t’r~l) = A (p) is a two-sided Laplace transform for the probability density 
of - E (x) (assuming that it exists). 

Thus (Y (Y)) = C If (x) J, where LC -= Q, @) A@) , and by the convolution theorem 
f Q) 

c (I) = s_ ‘yo -T)h(K)dT= Y(T)A(f-T)dT s 
0 

where L denotes the Laplace transform and A is one-dimensional probability 

- E (I) of the process. 
For the equality O(r) = e(*j to hold, function Y (Y) should obviously satisfy 

CG 

Y(f) = 
s 

U’(T)i(t-T)ffT 

u 

(3) 

density of 

(3) 
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When the least squares method is used in practice, the results showing large deviations 
from the regression curve f(x) are usually assumed erroneous and subsequently neglected. 
This fact enables us to consider only the distributions i. (T) concentrated on the finite 

segment T E (A, f+ We can assume, without loss of generality, that Y (x) > 0 for any 

a<x < b and write (4) as 1 

Y(f)= Y(r)A(f-T)h 
s (>) 
8 

where b and y denote, respectively, the minimum and maximum of 

(/ (x) + A, f (x) t &. a<x<b 

It can easily be confirmed that the identity transformation Y (1) = t will be a solution 

of the integral equtition (5) and. that it will be unique (this follows from the derivation 
of (4)). This in turn implies that O(‘j = tl(*’ if and only if the transformation is an iden- 

tity transformation. 
We note that’ A (I - T) -+ b (f - T) as o - 0 and Eq.(4) becomes an identity Y (I) =_ 

- Y (I). i.e. the error in determination of the correlation equation parameters dimini- 

shes under an arbitrary transformation Y , with decrease in the standard deviation : of 

the experimental data from the regression line. 
Formula (3) can be used to estimate the discrepancy between &I) and @(*j and to find 

the proper correction (0”’ - 8”‘) to the value of @“‘. 

Let us, for example, consider the regression line of the form / (z) = k d assuming, for 
definiteness, that 1> 0, so that f (I) increases monotonically with E changing from u to 6.. 
In addition we shall assume that the distribution of the experimental points relative to 

the regression line obeys the “truncated normal law” with the density 

I 

-a) fi6 
exP TE(A, w 

where 

S-a= -.&[exp (-&)d*. A=--0, B=qs, O<q<m 

Then by the previous argument, we have q. 

c (f) = 
1 

(1 - 
\ a) VT& _bo 

or, taking into account the fact that L > T by definition, (see e. g. [2]) 

~*~Z'b~*du = ln t - A (a, a) 

where the divergent series should be interpreted in the asymptotic sense. 
Restricting ourselves to the first term of (6) and estimating k’*’ and LC4) from the condi- 

tion of minimum of the functional 9 
\ [ln (k’)(l) - A - ln (kr’)(*)]*dr 
. 

we find that when I”) # ‘1~ 
0 

I 
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where In C = l/* (In D + In b) is the logarithmic mean interval of measurement. 
We can easily see from (7) (which are estimates), that the corrections depend not only 

on the extent of scatter of the experimental data, but also on the interval of measure- 
ments. This makes the comparison of the experimentally obtained parameters estimated 
according to the nonlinear linearized model and referring to different intervals of mea- 
surement either very difficult, or impossible. 

We can, however, propose a simple iterative method of obtaining 9’2) retaining the 
advantages of the linear model computations. At the II th step we seek 9,, which minimi- 

zes the functional 
b 

s 
p (x. @,_r) (‘y IV (Ml - y I/ (x. @,)I)’ ffz 

where 
l 

Y(X)-!f=. @,_I) 

I 

* 
p @* co-r) = Y [y (x)1 - Y I/(X, en_*)1 

(8) 

It can be shown that this iterative process converges, if the function vy’ I/(X, 611 is 
bounded and different from zero for a < x < b and, if such value tlo is chosen as the ini- 
tial approximation that / (x, e,,) approximates the observed values (e. g. tr’r’ can be used 

as 00). 
Convergence of the process improves considerably if 90 in the first approximation is 

determined graphically, or if we set B (x0 9) = {v IY (xw (9) 

We shall illustrate the results obtained by applying them to the experimental data ob- 
tained in [3]. Wide range of variation of the arguments (Schmidt number h’sc varies 

between 430 and 100000) and narrow spread of the experimental data (obtained at the 
fixed value of the Reynolds number K,, = i(r) relative to the approximating function 

fiS,r = kNSc’ (Nh’” is the Nusselt number) ensures objective test of the methods. _. _._.__ Let us find kf2) and 1’s) corresponding to the 

minimum value of the functional (1) which in 
this case has the form ss 

We construct an envelope fo the parabolas 
and find its minimum. Each parabola is com- 
puted for a fixed 2 and varying k (see Fig. 1). 
Point 1 of the graph corresponds to the values 
k = 40.3 and 1 = 0.355 recommended in [3] 
and obtained using (8) with p E 4, i. e. by the 
usual least squares method applied to Y (1). 
Using these values as initial and proceeding to 

the second approximation, we obtain k = 35.4 and 1 = 0.369(point 2) which is seen to be 
very accurate. 

We note an interesting fact, that the first approximation with cj3i = [NN,,,lZ (compared 
with (9)) gives already an excellent result of & = 34.4 and I = 0.372’ (point 3 on the 
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graph). Results of similar accuracy are obtained using Formulas (7) (k = 35.8 and 1 = 
= 0.376) and this illustrates the usefulness of such formulas in estimating probable errors 

in the values of parameters arising from the nonlinearity present in the linearizing trans- 
formation. 
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